Externally Aided Project (EAP)

Completed EAP 2012-13

Project	Name of Project	PI	Thrust Area	Research Findings
Sl. No.				
	Improving the accessibility and affordability of improved seeds from breeding programs to benefit large numbers of smallholder tree farms and rural communities in Tamil Nadu and Puducherry, India. (Aus AID, Australia)	Dr. A. Nicodemus	Genetic Improvement and Tree Improvement	This project was aimed at making available of high quality planting stock in the form of orchard- produced seeds to resource-poor farmers through a community- based seed production programme. Efforts were taken to disseminate the benefits of breeding undertaken in IFGTB to the users particularly farmers with the cooperation of State Forest Departments. A study visit to Australia, Vietnam and Thailand was undertaken 3 officials of IFGTB and one from TNFD. Two visits were made by Scientists from CSIRO Plant Industry to review seed production systems and to conduct training workshops for staff of forest department and industries and farmers. Established three community orchards in Puducherry, Marakkanam and Madurai (Total 4 ha) by involving farmers, forest department staff and traditional nursery operators. An action plant seed production and dissemination has been prepared.

2	Conducting Awareness Training Workshops on The Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). (MoEF –VI)	Dr. Maheshwar Hegde	Forest Genetic Resource Management	Series of training to CITES implementation agencies like Forest Department, police, Directorate of Revenue Intelligence, Customs and Excise were conducted on all India basis and booklets and brochures on all the CITES listed species were prepared.
3.	Bioproduction of Secondary Metabolites from <i>Aegle marmelos</i> (National Medicinal Plants Board, Govt. of India)	Dr. Rekha R Warrier	FGR Management	Phytochemical screening of the leaves and roots of the species was carried out Crude extracts of 3 different tissues of <i>Aegle</i> <i>marmelos</i> (leaves, stem bark and roots) were prepared in 5 different solvents <i>viz.</i> , chloroform, methanol, dichloromethane, petroleum ether & water and subjected to HPTLC. The distribution of alkaloids, flavanoids, terpenoids and coumarins was studied through uv fluorescence, uv absorption and white light transmittance. Eight different media combinations were tested with five growth regulator combinations in five replicates. Shoot and root explants responded well with the initiation period ranging from one to three weeks. 6.0 mg / L 2, 4 D was found to be the optimal growth regulator concentration. WPM medium facilitated better callus induction. Calli produced had a weight ranging from 85-100 mg on fresh weight basis. Variations in salt mixtures are being attempted to

			increase the callus production. Metabolite profile of the roots, stem, leaves, and primary branches of the wild plants was developed. Compact callus aggregates for callus obtained from different explants was optimized for increased growth in suspension cultures. Analysis of secondary metabolites in suspension cultures was carried out. Plant and human pathogens were tested with extracts
4 Web- Enabled	Dr. N.V. Mathish	Applied	 from calli obtained using different explants to assay the efficacy of the active principles in the calli. Active principles present in the calli showed inhibitory effects on the pathogens. A web enabled
Database and Analysis of Gene Sequences Implicated in Abiotic Stress Tolerance for Screening Gene Homologues in Sal Tolerant Tree Species. (DBT)		Genomic Research and Genetic engineering for desirable traits	 bioinformatics database "In Silico Gene Bank for Adaptation to Abiotic Stresses" were developed and is hosted at http://igbaas-ifgtb.icfre.gov.in Salt tolerant (TNIPT-4, TNKBM-407,) and salt susceptible (PYN, TNPV2,) clones contrasting for sodium accumulation during salt stress were screened from 85 clones that were tested. In tolerant clones, roots were shown to be critical in reducing sodium transport to the shoots. A progressive increase in proline content with the increasing NaCl concentration upto 450 mM was observed after which

analyses of sodiu transporter genes we initiated using Real-tin PCR for quantifying ge expression in the identifi salt tolerant and susceptible clones of Casuarina.
initiated using Real-tin PCR for quantifying ge expression in the identifit salt tolerant and susceptible
PCR for quantifying ge expression in the identifi salt tolerant and susceptib
expression in the identifies salt tolerant and susceptible
expression in the identifies salt tolerant and susceptible
salt tolerant and susceptible
• The sodiu
hydrogen antiporter ger
(NHX) from <i>Casuari</i>
<i>equisetifolia</i> (330 b
Eucalyptus camaldulen
(494 bp), E. tereticor
(614 bp), Pongan
pinnata (385 bp), Acad
nilotica (348 bp), Prosop
juliflora (371 bp), Kande
candel (725 bp), Bruguie
gymnorhiza, (355 bp),
cylindrica (445 bp),
sexangula (351 bp), HK
gene from <i>E.tereticorn</i>
(638 bp), <i>P. juliflora</i> (2
bp), AKT1 genes from
<i>equisetifolia</i> (236 bp),
<i>camaldulensis</i> (280 bp),
<i>juliflora</i> (300 bp),
sexangula (325 bp),
<i>cylindrica</i> (230 bp),
<i>candel</i> (310 bp), and
nilotica (361 bp), and t
Actin genes from
<i>cylindrica</i> (293 bp),
gymnorhiza (265 bp),
sexangula (255 bp),
candel (234 bp), A.niloti
(201 bp), <i>P. pinnata</i> (2
bp), E. camaldulensis (3
bp) and C. equisetifo
(204 bp) were sequence
and published w
accession Numbers at t
GenBank Database of t
National Centre
Biotechnology Informati
(NCBI), National Libra
of Medicine, Nation
Institute of Health, USA.

5	Identification of	Dr. A.	Mycorrhiza	Casuarinas are being
5	superior growth	Karthikeyan	and other	cultivated in Pondicherry
	1 0	Rarunkeyan	beneficial	and Tamilnadu day by day
	promoting strains of			due to its popularization as
	<i>Frankia</i> in		microbes	fuel wood species, nitrogen
	Casuarina			fixing capacity and
	equisetifolia and C.			potential for adaptation to
	junghuhniana			diversified soil and
				climatic conditions.
	(DBT)			Casuarina equisetifolia and
				Casuarinas junghuhniana
				seedlings were raised under
				nursery level and also
				vegetatively propagated
				rooted stem cuttings using
				inert material (vermiculate)
				of C.equisetifolia and
				C.junghuhniana. The roots
				of <i>C.equisetifolia</i> and <i>C</i> .
				junghuhniana produce root
				nodules were the bacteria
				fixes atmospheric N ₂ which
				is essential nutrient for all
				plant metabolites
				activities.10 different
				strains of <i>Frankia</i> isolated
				from different places of
				<i>C.equisetifolia</i> and
				C.junghuhniana
				plantations. The strains were characterized and
				identified as <i>Frankia</i>
				through morphological.
				<i>Frankia</i> colonies are
				differentiated in to 3
				different cell types' vise (1)
				hyphae (2) spores and (3)
				vesicles. <i>Frankia</i> strains
				cultured in artificial liquid
				P media and applied in this
				study. Nitrogenase activity
				was done using Acetylene
				reduction Assay (GC) for
				identified superior strains
				of Frankia. The superior
				strains identified as Cjcbe1,
				CeAN1, CePy2, and
				CeCo2. The Frankia
				strains were inoculated at
				the rate of 5ml during the

root initiation stage of
above casuarina spp. as the
result in the development
of root nodules of
C.equisetifolia and
<i>C.junghuhniana</i> after 25
days. The rooted stem
cuttings of <i>C.equisetifolia</i>
and <i>C.junghuhniana</i> also
showed increase in root
shoot biomass and .tissue
N_2 content due to the
inoculation of Frankia.
These clones were planted
in the field and growth
assessments were taken.
The inoculation of <i>Frankia</i>
resulted increased growth
than non inoculated trees.
Soil nutrients were
increased after planted
<i>Frankia</i> inoculated
<i>C.equisetifolia</i> and <i>C.</i>
junghuhniana rooted stem
cuttings. A product called
N fixer was developed and
released for the benefit of
Casuarina growers.